Warning: main(../includes/authenticateuser.php): failed to open stream: No such file or directory in /home/ocean4/public_html/pages/geology/continental_drift.php on line 3

Warning: main(../includes/authenticateuser.php): failed to open stream: No such file or directory in /home/ocean4/public_html/pages/geology/continental_drift.php on line 3

Warning: main(): Failed opening '../includes/authenticateuser.php' for inclusion (include_path='.:/usr/lib/php:/usr/local/lib/php') in /home/ocean4/public_html/pages/geology/continental_drift.php on line 3
Welcome To ExploreWorldOcean.com
   
 
   
   
   
   
   
   
   
   
   
 
 
 


days until World Ocean Day.
World Ocean Day logo

The Theory of Continental Drift

As all of us know, if you make cutouts of Africa and South America, and put them together, they appear to fit perfectly just like a jigsaw puzzle. On this basis, it seems likely that the continents used to be joined together and subsequently have drifted to their present positions. However, for hundreds of years, this theory was repeatedly rejected. Just as astronomers in the 18th century finally convinced the world that the earth was not the center of the Universe, so have geologists since the late 1960s finally convinced the world that the continents are moving.

 

The history of the theory of plate tectonics, which encompasses continental drift, is a fascinating account of how science works. Its triumph is how so many widely disparate phenomena--earthquakes, volcanoes, fossil records, geological formations, mountains, deep-sea submarine trenches--have been drawn under the same umbrella. As you read these accounts, consider how puzzling it must have been to be aware of many of these phenomena yet have no explanation. Think how you might answer a school child's question "did the continents ever fit together" in the absence of any explanation.

The theory of continental drift has been around for a long time. Our astronomer friend, Sir Francis Bacon, noted as early as 1620 that the continents seemed to fit together. His contemporary, Galileo Galilei (1564-1642) was even purported to say "Eppur si muove!" -- But it does move!

In 1756, the German Reverend Theodor Lilienthal noted that "the facing coasts of many countries, though separated by the seas, have a congruent shape, so that they would almost fit one another if they stood side by side." Even Benjamin Franklin (1706-1790), who discovered electricity with a kite and a key (among many notable accomplishments), once proposed that our Earth had a fluid core that buoyed up the continents on their rocky shell.

Other noted luminaries who cast their votes for continental drift were the French naturalist, George Buffon (1707-1788), and the German scientist and explorer, Alexander von Humboldt (1769-1859), after whom an ocean current, a college, and a town are named.

In 1858, an Italian geographer, Antonio Snider, drew maps of the first reconstruction of the continents as he thought they should appear prior to separation.

And let us not forget Edward Suess, an Austrian geologist living in the late nineteenth Century (ancestor of the great Dr. Suess?), who coined the name "Gondwanaland", a supercontinent that included all the continents of the southern hemisphere and India; and Laurasia, encompassing all the northern continents (Was his book called "Green Eggs and Gondwanaland?"...I wonder). From 1885 to 1909, he published a series of volumes related to the "theory of separation".

In 1908, Frank Taylor and Howard Baker lined up the mountain ranges on opposite sides of the Atlantic. The rock formations and minerals in the Caledonian mountains of northern Europe match up with the Appalachian mountains of the United States and Canada. Coincidence or continental drift?

The first comprehensive evidence was compiled by another German, Alfred Wegener, a meteorologist who assembled a strong case for the theory of continental drift in his book Die Enstehung der Kontinente und Ozeane, published in 1912, to explain climate changes over the past several hundred years. In this book, Wegener presented compelling arguments, based on paleontology, climatology, geography, and geology. The continents were joined as one great landmass, which he called Pangaea, meaning all lands.

Despite Wegener's best arguments, his theory suffered from one fatal flaw. "How," his colleagues asked, "could a rock solid continent plow through a stone ocean floor. Huh? Answer me that, Dr. Wegener!" Having been born a few thousand years too late, he could not resort to the "Atlas shrugged" mechanism for Earth movement (the "reason" the Greeks gave as the cause of earthquakes), and he was at loss for a plausible explanation As such, Wegener's claims were badly ridiculed, such that in 1930 he escaped to Greenland, where he died in a blizzard. Nonetheless, his ideas remained alive, and for the next 40 years the idea of continental drift was hotly debated.

How else could one explain the distribution of fossils across the continents? Fossils of the great Permian reptile Mesosaurus was found on both sides of the South Atlantic Ocean in the 19th century. No Tarzan when it came to swimming, Mesosaurus probably did not swim across the Atlantic, so paleontologists invented a land bridge to explain his presence on two continents. Still more baffling, British scientists discovered plant fossils only 400 miles from the South Pole -- now had did those get there?! Add to this bit of evidence, ancient coal forests in the Arctic; glacial deposits in the tropics; and desert sands underneath rain forests -- you get the picture.

How about the distribution of living animals? Suess and Wegener pointed out the presence of a land snail, found in Japan, Europe, and the east coast of North America (not the west coast). Did a bird carry it across two oceans, but forget to drop it in California? I think not! When Wegener put together his map of Pangaea and marked it with the distribution of this little snail, he found that the snail's world fit nicely into one closely connected circle. Apparently, the snail's homeland had been ripped apart by the movement of the continents; that is, if you believed that the continents moved.

Sometimes the most obvious things are the hardest to accept, especially if they don't fit our preconceived notion of the world. The theory of continental drift hit its low point in 1957, when the Encyclopedia Brittanica published their opinion that Wegener's Pangaea was "purely fanciful." Bob Ballard, a geophysicist and ocean explorer who discovered the wreck of the Titanic in 1985 and attended graduate school in the 1950s, recalls that "a college professor who taught that the continents moved risked his academic reputation."

Yet, throughout the 1940s and 50s, a quiet revolution was occurring in the halls of geoscience. As a result of the development of echo sounders during World War I (to replace the hemp and wire "lead" lines that had been used by survey ships to that points), a very different picture of the ocean floor was emerging. A mountain ridge was discovered in the middle of the Atlantic, and guyots, those curious flat-topped undersea mountains, began to be discovered. How could these features be explained?

In the 1940s, underwater seismic exploration was invented. By throwing crates of dynamite into the ocean, and recording the sound waves that returned from the bottom, scientists could look at the layers of rock beneath the ocean floor. In 1947, two American geophysicists, Maurice Ewing and Bruce Heezen, discovered that the sediments on the ocean floor were far too young and not thick enough given the millions of years over which they should have been accumulating. Another riddle was sprung.

As undersea exploration continued through the 50s and 60s, the accumulated data of thousands of ship crossings began to reveal the true extent of "the mountain in the middle of the Atlantic." In actuality, the "mountain" turned out to be a 46,000-mile ridge that ran in one fashion or another through all the oceans of the world. This ridge came to be known collectively as the Mid-Oceanic Ridge. A different picture of the world was emerging.

Perhaps the most vital evidence came as a result of a World War II device used to detect German submarines. This device, called MAD (Magnetic Airborne Detector) was modified by oceanographers so that it could be towed behind a ship and measure the magnetic fields of the rocks on the sea floor. Though they intended to look for valuable minerals, what they oceanographers found was even more "valuable" and puzzling. Stretching out in a series of zebra-like bands from each side of the Mid-Ocean Ridge were a series of magnetic reversals, i.e. changes in the magnetic direction of the rocks. Some of these bands were directed towards the north (as the magnetic field normally aligns) and some were weak or reversed. Most interestingly (and puzzling), a comparison of bands on the east side of the ridge with bands on the west side of the ridge revealed that they were "mirror" images; that is, they were exact duplicates of each other extending from the ridge towards the continents.

This symmetry in the magnetic stripes in the ocean floor was just too obvious to be ignored. As one scientist put it, "Earth is trying to tell us something." That something turned out to be sea-floor spreading, as proposed in 1960 by the Princeton geologist and ex-Naval commander Harry H. Hess. Hess reasoned that deep within the Earth, molten material, generated by the natural radioactive decay of rocks, circulated in convection cells, circular movements from the core to the crust and back again. According to his hypothesis, molten material was forced upward until it oozed out at the location of the oceanic ridges and then descended downwards as it cooled near the edges of the continents. As the ocean floor descended, it formed submarine trenches. This hypothesis gained the name of sea-floor spreading, named by another geologist, Richard Dietz, who formed a model of the process at the same time as Hess. Sea-floor spreading was pure speculation at the time Hess and Dietz proposed it. In fact, so uncertain was Hess of its acceptance by the scientific community that he originally called the hypothesis "geopoetry."

This "hypothesis" turned out to be just what another group of scientists needed to explain the magnetic stripe anomalies on the ocean floor. In 1963, an American geologist, Matthew Morley, and two Cambridge geologists, Frederick Vine and Drummond Matthews, reasoned that the "oozing" of molten material at the oceanic ridges represented the source of new ocean floor. As this material cooled, the iron particles aligned themselves with the Earth's magnetic compass, creating a permanent record of the Earth's magnetic field. As magnetic reversals (changes in the direction of the "north" pole, i.e. magnetic north becomes magnetic south) were known to occur, this explanation of the magnetic patterns seemed most plausible. These data were also supported by observations of magnetic reversals in rocks in Europe and North America, as published by Keith Runcorn in the 1960s, who was a proponent of continental movement.

The idea of sea-floor spreading also predicts that the rocks nearest the ridge are younger than the rocks further away, and this is just what scientists found. On either side of oceanic ridges, the age of rocks increased with increasing distance from the ridge. In addition, the parallel bands of rocks on either side not only had the same magnetic properties, but they had the same age as well.

In 1968 and 1969, as part of the Deep Sea Drilling Project and the Ocean Drilling Program, funded by government agencies, deep-sea cores were obtained using the Glomar Challenger, which was designed by oil companies to look for oil deposits deep beneath the ocean floor. Their findings confirmed the age versus distance predictions of sea-floor spreading. No ocean crust older than 180 million years was found. Furthermore, fossils in the core samples from the ocean floor showed a step-by-step increase in age further and further from oceanic ridges. These samples also showed that the thickness of sediments increased with increasing distance from the ridges, further substantiating that the ocean floor was moving outward.

By the mid- 1960s, the theory of continental drift was gaining acceptance. It was clear that the sea floor was spreading outward from ridges of volcanic activity located generally in the middle of the oceanic basins. As the sea floor spread, it undoubtedly took the continents with them. However, the puzzle still remained for many scientists as to what happened to the sea floor at the edge of the continents. We knew it was moving, and we knew it was probably disappearing down submarine trenches, but then what?

The answer, as with many of the clues to continental drift, had been supplied as far back as 1935. At that time, a Japanese seismologist, Kyoo Wadati presented data indicating that earthquakes increased in depth from the Pacific Ocean to the interior of the Asian continent. Another geologist, Hugo Benioff, made the same observation after World War II, but couldn't come up with an explanation so the data were largely ignored.

The final clue finally came as a result of the worldwide ban on aboveground nuclear testing in 1963. As part of the treaty, 125 seismic stations were set up around the world to monitor any unusual nuclear explosions. By examining the seismic recordings, or seismographs, made during underground nuclear tests, scientists could visibly see that the ocean crust was descending in places where submarine trenches occurred. The fact that earthquakes were deeper towards the interior of continents on the side that trenches occurred corroborated the movement of ocean crust back into the interior of the Earth.

By this time the theory of continental drift was gaining many converts. In 1965, another Japanese geologist, Tuzo Wilson, coined the term "plates" to refer to the pieces of continent that moved around. Then, in 1967, two British geophysicists, Dan MacKenzie and R. L. Parker, and an American geophysicist, independently proposed the theory of plate tectonics, meaning plate "construction." The term tectonics is taken from a character in Homer's Iliad, the carpenter Tekton. Two months after Morgan, Xavier Le Pichon published a map indicating the probable locations of the plates.

The theory of plate tectonics was highly revolutionary. It unified Wegener's ideas about continental drift, first proposed in 1912, with Hess's concept of sea-floor spreading. By combining these ideas into one coherent model, all aspects of the formation of the continents, the history of their movements and the present-day structure of the continents and ocean basins could be explained. In fact, the theory of plate tectonics also provided a logical explanation for the occurrence and locations of major earthquakes. Finally, there could be no doubt. After more than 55 years, Wegener's ideas were finally accepted.

Modern day studies confirm the "dance of the continents" and suggests that the continents have "assembled and disassembled" more than once during Earth's 4.6 billion year history. The theory of plate tectonics, which encompasses continental drift, unites many fields of geology and set off a flurry of geophysical research that continues to this day. As seismic and oceanographic techniques are improved, our ability to measure tectonic processes improves. While the theory generally fits much of the available data, the mechanisms and their effects are still only poorly understood. As we probe deeper into our own Earth, and as we explore other planets and compare their geological histories, our understanding of these processes will be considerably improved.

 

mining the structure and functioning of oceanic ecosystems are the essence of oceanography. The lecture you are about to read is my expression of that theme.The interactions between physical, chemical, geological and biological processes in determining the structure and functioning of oceanic ecosystems are the essence of oceanography. The lecture you are about to read is my expression of that theme.

The interactions between physical, chemical, geological and biological processes in determining the structure and functioning of oceanic ecosystems are the essence of geological and biological processes in deteroceanography. The lecture you are about to read is my expression of that theme.

   
   
Copyright © 2006 by ExploreWorldOcean. All Rights Reserved.